• Overview
  • Calculus
    • Calculus Overview
    • Activation Functions
    • Differential Calculus
    • Euler's Number
    • Gradients
    • Integral Calculus
    • Logarithms
    • Rectifier Activation Function
    • Sigmoid Activation Function
    • Stochastic Gradient Descent
    • Tanh Activation Function
  • Computing Systems
    • Computing Systems Overview
    • Application Programming Interface
    • Big O Notation
    • Client-Server Architecture
    • Cloud Computing
    • DOM
    • Exponential Growth
    • Graphics Processing Units
    • HTML iframe
    • Hybrid Cloud Computing
    • Internet Protocol Suite
    • Machine Learning & AI Platforms
    • P Versus NP Complexity
    • Quantum Computing
    • Server
    • Software Containers
    • System Scaling
    • Web Crawler
  • Data
    • Data Overview
    • Columnar Databases
    • CSV Data
    • Data Cleaning
    • Data Discovery
    • Data ETL
    • Data Flow
    • Data Lake
    • Data Lakehouse
    • Data Pipeline
    • Data Visualization
    • Data Warehouse
    • Dimensionality Reduction
    • Document Databases
    • Extrapolation
    • Factor Analysis
    • Graph Databases
    • Interpolation
    • JSON
    • Large Data Querying
    • Normalization
    • Outliers
    • Principal Components Analysis
    • Relational Databases
    • Sampling
    • Signal Processing
    • Synthetic Data
    • Vector Databases
  • Linear Algebra
    • Linear Algebra Overview
    • Concatenation
    • Convolution
    • Eigenvalues and Eigenvectors
    • Linear Equations
    • Linear Vector Projection
    • Masking
    • Matrices
    • Pooling
    • Scalars
    • Softmax Function
    • Vectors
  • Models and Modeling
    • Models and Modeling Overview
    • AI Agents
    • Algorithm Libraries
    • Artificial General Intelligence
    • Artificial Narrow Intelligence
    • Artificial Neural Networks
    • Artificial Superintelligence
    • Artificial Universal Intelligence
    • Attention
    • Automated Machine Learning
    • Backpropagation
    • Causal Embedding
    • Classification
    • Cluster Analysis
    • Collaborative Filtering
    • Convolutional Neural Networks
    • Cross Decomposition
    • Curve Fitting
    • Decision Trees
    • Deep Learning
    • Deep Reasoning
    • Diffusion Models
    • Ensemble Learning
    • Explainability
    • Feature Selection
    • Fourier Analysis
    • Foundation Models
    • Gaussian Analysis
    • Generative Adversarial Networks
    • Generative AI
    • Gradient Boosting
    • Graphs
    • Histogram of Oriented Gradients
    • Image Processing
    • K-Means Clustering
    • Large Language Models
    • Linear Regression
    • Logistic Regression
    • Long Short-term Memory
    • Markov Chains
    • Model Alignment
    • Model Categories
    • Model Self Improvement
    • Modeling Process
    • Naive Bayes
    • Nearest Neighbors
    • Probabilistic Graphical Models
    • Prompts and Prompting
    • Random Forest
    • Recurrent Neural Networks
    • Regression Analysis
    • Regularization
    • Reinforcement Learning
    • Retrieval Augmented Generation
    • Supervised Learning
    • Support Vector Machines
    • Transformer Neural Networks
    • Unsupervised Learning
    • Word Embedding
  • Organization
    • Organization Overview
    • Agile Processes
    • Application Selection Process
    • Business Model Components
    • Chief AI Officer
    • Coding
    • Functional Groups
    • Governance
    • Implementation
    • Individuals
    • Research
    • Risks
    • Staying Current
  • Probability
    • Probability Overview
    • Central Limit Theorem
    • Cross Entropy Loss
    • Entropy
    • Independent Events
    • Law of Large Numbers
    • Mutually Exclusive Events
    • Normal Distribution
    • Poisson Distribution
    • Probability Density Function
    • Probability Measure
    • P-Value
  • Programming Constructs
    • Programming Constructs Overview
    • Abstraction
    • Array
    • Attribute
    • Best-first Search
    • Binary Search
    • Block
    • Branch
    • Callback
    • Class
    • Conditional
    • Constructor
    • Container/Collection
    • Dynamic Array
    • Dynamic Programming
    • Encapsulation
    • Exception
    • Expression
    • Function
    • Garbage Collection
    • Greedy Algorithms
    • Hash
    • HTTP Request
    • Identifier
    • Inheritance
    • Inner Class
    • Instance
    • Iterator
    • Keyword
    • Lambda
    • Libraries
    • List
    • Linked List
    • Literal
    • Metaclass
    • Method
    • Mixin
    • Object
    • Operator
    • Overloading
    • Overriding
    • Package
    • Parameter
    • Polymorphism
    • Primitive
    • Programming Process
    • Recursion
    • Reflection
    • Regular Expression
    • Reserved Word
    • Return
    • Sort
    • Statement
    • Switch
    • Table
    • This/Self
    • Token
    • Type
    • Variable
  • Statistics
    • Statistics Overview
    • Accuracy
    • A/B Testing
    • Bias
    • Bias-Variance Tradeoff
    • Confidence
    • Correlation
    • Confusion Matrix
    • Deviation
    • Dispersion
    • Estimator
    • Fairness
    • Loss (Cost) Function
    • Mean Squared Error
    • Hypothesis
    • Prediction and Inference
    • Repeatability
    • Standard Deviation
    • Statistical Power of a Test
    • Variance
  • Trigonometry
    • Trigonometry Overview
    • Cosine Similarity
    • Periodic Functions
    • Trigonometric Functions
  • Glossary and Index
  • Mathematical Symbols
  • Applications
  • Search
  • Blog
  • About the Author
  • Contact
  • Menu

The Science of Machine Learning & AI

Mathematics - Data Science - Computer Science
  • Overview
  • Calculus
    • Calculus Overview
    • Activation Functions
    • Differential Calculus
    • Euler's Number
    • Gradients
    • Integral Calculus
    • Logarithms
    • Rectifier Activation Function
    • Sigmoid Activation Function
    • Stochastic Gradient Descent
    • Tanh Activation Function
  • Computing Systems
    • Computing Systems Overview
    • Application Programming Interface
    • Big O Notation
    • Client-Server Architecture
    • Cloud Computing
    • DOM
    • Exponential Growth
    • Graphics Processing Units
    • HTML iframe
    • Hybrid Cloud Computing
    • Internet Protocol Suite
    • Machine Learning & AI Platforms
    • P Versus NP Complexity
    • Quantum Computing
    • Server
    • Software Containers
    • System Scaling
    • Web Crawler
  • Data
    • Data Overview
    • Columnar Databases
    • CSV Data
    • Data Cleaning
    • Data Discovery
    • Data ETL
    • Data Flow
    • Data Lake
    • Data Lakehouse
    • Data Pipeline
    • Data Visualization
    • Data Warehouse
    • Dimensionality Reduction
    • Document Databases
    • Extrapolation
    • Factor Analysis
    • Graph Databases
    • Interpolation
    • JSON
    • Large Data Querying
    • Normalization
    • Outliers
    • Principal Components Analysis
    • Relational Databases
    • Sampling
    • Signal Processing
    • Synthetic Data
    • Vector Databases
  • Linear Algebra
    • Linear Algebra Overview
    • Concatenation
    • Convolution
    • Eigenvalues and Eigenvectors
    • Linear Equations
    • Linear Vector Projection
    • Masking
    • Matrices
    • Pooling
    • Scalars
    • Softmax Function
    • Vectors
  • Models and Modeling
    • Models and Modeling Overview
    • AI Agents
    • Algorithm Libraries
    • Artificial General Intelligence
    • Artificial Narrow Intelligence
    • Artificial Neural Networks
    • Artificial Superintelligence
    • Artificial Universal Intelligence
    • Attention
    • Automated Machine Learning
    • Backpropagation
    • Causal Embedding
    • Classification
    • Cluster Analysis
    • Collaborative Filtering
    • Convolutional Neural Networks
    • Cross Decomposition
    • Curve Fitting
    • Decision Trees
    • Deep Learning
    • Deep Reasoning
    • Diffusion Models
    • Ensemble Learning
    • Explainability
    • Feature Selection
    • Fourier Analysis
    • Foundation Models
    • Gaussian Analysis
    • Generative Adversarial Networks
    • Generative AI
    • Gradient Boosting
    • Graphs
    • Histogram of Oriented Gradients
    • Image Processing
    • K-Means Clustering
    • Large Language Models
    • Linear Regression
    • Logistic Regression
    • Long Short-term Memory
    • Markov Chains
    • Model Alignment
    • Model Categories
    • Model Self Improvement
    • Modeling Process
    • Naive Bayes
    • Nearest Neighbors
    • Probabilistic Graphical Models
    • Prompts and Prompting
    • Random Forest
    • Recurrent Neural Networks
    • Regression Analysis
    • Regularization
    • Reinforcement Learning
    • Retrieval Augmented Generation
    • Supervised Learning
    • Support Vector Machines
    • Transformer Neural Networks
    • Unsupervised Learning
    • Word Embedding
  • Organization
    • Organization Overview
    • Agile Processes
    • Application Selection Process
    • Business Model Components
    • Chief AI Officer
    • Coding
    • Functional Groups
    • Governance
    • Implementation
    • Individuals
    • Research
    • Risks
    • Staying Current
  • Probability
    • Probability Overview
    • Central Limit Theorem
    • Cross Entropy Loss
    • Entropy
    • Independent Events
    • Law of Large Numbers
    • Mutually Exclusive Events
    • Normal Distribution
    • Poisson Distribution
    • Probability Density Function
    • Probability Measure
    • P-Value
  • Programming Constructs
    • Programming Constructs Overview
    • Abstraction
    • Array
    • Attribute
    • Best-first Search
    • Binary Search
    • Block
    • Branch
    • Callback
    • Class
    • Conditional
    • Constructor
    • Container/Collection
    • Dynamic Array
    • Dynamic Programming
    • Encapsulation
    • Exception
    • Expression
    • Function
    • Garbage Collection
    • Greedy Algorithms
    • Hash
    • HTTP Request
    • Identifier
    • Inheritance
    • Inner Class
    • Instance
    • Iterator
    • Keyword
    • Lambda
    • Libraries
    • List
    • Linked List
    • Literal
    • Metaclass
    • Method
    • Mixin
    • Object
    • Operator
    • Overloading
    • Overriding
    • Package
    • Parameter
    • Polymorphism
    • Primitive
    • Programming Process
    • Recursion
    • Reflection
    • Regular Expression
    • Reserved Word
    • Return
    • Sort
    • Statement
    • Switch
    • Table
    • This/Self
    • Token
    • Type
    • Variable
  • Statistics
    • Statistics Overview
    • Accuracy
    • A/B Testing
    • Bias
    • Bias-Variance Tradeoff
    • Confidence
    • Correlation
    • Confusion Matrix
    • Deviation
    • Dispersion
    • Estimator
    • Fairness
    • Loss (Cost) Function
    • Mean Squared Error
    • Hypothesis
    • Prediction and Inference
    • Repeatability
    • Standard Deviation
    • Statistical Power of a Test
    • Variance
  • Trigonometry
    • Trigonometry Overview
    • Cosine Similarity
    • Periodic Functions
    • Trigonometric Functions
  • Glossary and Index
  • Mathematical Symbols
  • Applications
  • Search
  • Blog
  • About the Author
  • Contact

Blog Special: The Accelerating Evolution of Artificial Intelligence

Copyright © 2016-2025 Don Cowan All Rights Reserved

Mathematical Notation Powered by CodeCogs

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Blog RSS

About the Author


Recent Work on Large Language Model Fine Tuning

November 18, 2024 in Artificial Intelligence

Recent works highlight ongoing efforts to make LLM fine-tuning more efficient, effective, and applicable to specific domains and tasks.

Fine-Tuning Main Thrusts

Task-Specific Performance Enhancement

  • Fine-tuning optimizes LLMs for particular tasks, improving accuracy for specialized applications.

  • Crucial for tasks requiring high precision, like sentiment analysis or entity recognition.

Domain Adaptation

  • Tailors LLMs to specific industries or fields (e.g., healthcare, legal).

  • Helps models learn domain-specific terminology and context.

Instruction Tuning

  • Trains models to follow specific instructions or prompts more effectively.

  • Improves the model's ability to understand and execute task-specific commands.

Efficiency and Resource Optimization

  • Parameter-Efficient Fine-Tuning (PEFT) techniques reduce computational costs.

  • Methods like Low-Rank Adaptation (LoRA) allow fine-tuning with fewer trainable parameters.

Data Customization

  • Allows incorporation of proprietary or specialized datasets.

  • Enables models to learn from company-specific data while maintaining general knowledge.

Multi-Task and Multi-Domain Fine-Tuning

  • Trains models on multiple tasks or domains simultaneously.

  • Aims to create more versatile models with broader capabilities.

Supervised Fine-Tuning

  • Uses labeled datasets with explicit input-output pairs.

  • Focuses on improving performance on specific, well-defined tasks.

Hyperparameter Optimization

  • Involves tuning various parameters like learning rate, batch size, and epochs.

  • Crucial for balancing model performance and preventing overfitting.

Transfer Learning

  • Leverages knowledge from pre-trained models to new, related tasks.

  • Reduces the need for large amounts of task-specific training data.

Compliance and Security

  • Allows for fine-tuning on private data to meet data compliance requirements.

  • Enables creation of models that adhere to specific security or privacy standards.

Fine-Tuning Recent Techniques

LIMA (Less Is More for Alignment)

LIMA demonstrated that alignment-style fine-tuning can be achieved with very little data, suggesting that most of an LLM's knowledge comes from pre-training. A study showed that fine-tuning primarily teaches the correct style rather than new information, challenging the notion that large datasets are always necessary for effective fine-tuning.

LoRA (Low-Rank Adaptation/Approximation)

LoRA introduced a technique for efficient fine-tuning by adding small, trainable matrices to the model's existing Artificial Neural Network layers. This method significantly reduces the number of trainable parameters and computational resources required for fine-tuning, making it particularly useful for adapting large language models to specific tasks or domains. Transformer libraries such as in PyTorch can be used to include LoRA matrices in a transformer neural network. Julia Linear Algebra LowRankApprox is an example of a library for creating low rank matrices.

QLoRA (Quantized Low-Rank Adaptation)

QLoRA extended the LoRA technique by combining it with quantization methods. This approach further reduced memory requirements, allowing for fine-tuning of large language models on consumer-grade GPUs without compromising performance.

PEFT (Parameter-Efficient Fine-Tuning)

PEFT is a framework that encompasses various efficient fine-tuning methods, including LoRA, Prefix Tuning, and Prompt Tuning. It provides a unified approach to implementing these techniques, making it easier for researchers and practitioners to experiment with different parameter-efficient fine-tuning methods.

Instruction Tuning

This approach focuses on fine-tuning models to follow specific instructions, often using datasets like FLAN. Recent work has explored more efficient ways to create instruction datasets and improve the quality of instruction-following behavior in LLMs.

TULU and TULU-2

These studies provided broader evaluations of fine-tuned LLMs, highlighting the importance of the base model's quality and the relevance of the fine-tuning dataset to the evaluation domain. They demonstrated that fine-tuning works best when the dataset is highly relevant to the intended application area.

DoRA (Weight-Decomposed Low-Rank Adaptation)

DoRA is a recent alternative to LoRA that decomposes the weight matrix into magnitude and direction components. This approach has shown promising results, potentially outperforming LoRA in various tasks while maintaining efficiency.

ReFT (Representation Fine-Tuning)

ReFT adapts large models via updates to a small number of weights. ReFT methods operate on a frozen base model and learn task-specific interventions on hidden representations.

References

  • https://en.wiktionary.org/wiki/recen

  • https://www.spanishdict.com/translate/recen

  • https://magazine.sebastianraschka.com/p/lora-and-dora-from-scratch

  • https://www.biblestudytools.com/lexicons/hebrew/nas/recen.html

  • https://www.datacamp.com/tutorial/mastering-low-rank-adaptation-lora-enhancing-large-language-models-for-efficient-adaptation

  • https://www.biblestudytools.com/lexicons/hebrew/kjv/recen-2.html

  • https://journalofbigdata.springeropen.com/articles/10.1186/s40537-024-00963-0

  • https://www.youtube.com/watch?v=DhRoTONcyZE

Tags: LLM, Fine Tuning, Artificial Intelligence
Prev / Next

Blog


Featured Posts

Featured
AI Agents.png
Apr 29, 2025
Developments in AI Agents: Q1 2025 Landscape Analysis
Apr 29, 2025
Apr 29, 2025
AI in 2025.png
Apr 1, 2025
The Technical Evolution of AI in 2025
Apr 1, 2025
Apr 1, 2025
Executive Discussing AI.png
Feb 26, 2025
The Hurdles of AI Implementation: Navigating the Challenges for Enterprises
Feb 26, 2025
Feb 26, 2025
CAIO at work.png
Feb 13, 2025
The Chief AI Officer: Driving Enterprise Value in the Age of Artificial Intelligence
Feb 13, 2025
Feb 13, 2025
Worker with Robot.png
Jan 2, 2025
Thriving in the Age of Superintelligence: A Guide to the Professions of the Future
Jan 2, 2025
Jan 2, 2025
Use of AI in Medicine.jpg
Dec 20, 2024
AI in Medicine: Revolutionizing Healthcare
Dec 20, 2024
Dec 20, 2024
Model Fine Tuning.png
Nov 18, 2024
Recent Work on Large Language Model Fine Tuning
Nov 18, 2024
Nov 18, 2024
AI Spring.png
Nov 7, 2024
The New AI Spring: Why an AI Winter is Unlikely This Time
Nov 7, 2024
Nov 7, 2024
Extending Life Expectancy with AI.png
Oct 26, 2024
How AI Can Help Extend Life Expectancy
Oct 26, 2024
Oct 26, 2024
Living and Working with AI.png
Oct 25, 2024
How AI Will Change the Way We Live and Work
Oct 25, 2024
Oct 25, 2024