• Overview
  • Calculus
    • Calculus Overview
    • Activation Functions
    • Differential Calculus
    • Euler's Number
    • Gradients
    • Integral Calculus
    • Logarithms
    • Rectifier Activation Function
    • Sigmoid Activation Function
    • Stochastic Gradient Descent
    • Tanh Activation Function
  • Computing Systems
    • Computing Systems Overview
    • Application Programming Interface
    • Big O Notation
    • Client-Server Architecture
    • Cloud Computing
    • DOM
    • Exponential Growth
    • Graphics Processing Units
    • HTML iframe
    • Hybrid Cloud Computing
    • Internet Protocol Suite
    • Machine Learning & AI Platforms
    • P Versus NP Complexity
    • Quantum Computing
    • Server
    • Software Containers
    • System Scaling
    • Web Crawler
  • Data
    • Data Overview
    • Columnar Databases
    • CSV Data
    • Data Cleaning
    • Data Discovery
    • Data ETL
    • Data Flow
    • Data Lake
    • Data Lakehouse
    • Data Pipeline
    • Data Visualization
    • Data Warehouse
    • Dimensionality Reduction
    • Document Databases
    • Extrapolation
    • Factor Analysis
    • Graph Databases
    • Interpolation
    • JSON
    • Large Data Querying
    • Normalization
    • Outliers
    • Principal Components Analysis
    • Relational Databases
    • Sampling
    • Signal Processing
    • Synthetic Data
    • Vector Databases
  • Linear Algebra
    • Linear Algebra Overview
    • Concatenation
    • Convolution
    • Eigenvalues and Eigenvectors
    • Linear Equations
    • Linear Vector Projection
    • Masking
    • Matrices
    • Pooling
    • Scalars
    • Softmax Function
    • Vectors
  • Models and Modeling
    • Models and Modeling Overview
    • AI Agents
    • Algorithm Libraries
    • Artificial General Intelligence
    • Artificial Narrow Intelligence
    • Artificial Neural Networks
    • Artificial Superintelligence
    • Artificial Universal Intelligence
    • Attention
    • Automated Machine Learning
    • Backpropagation
    • Causal Embedding
    • Classification
    • Cluster Analysis
    • Collaborative Filtering
    • Convolutional Neural Networks
    • Cross Decomposition
    • Curve Fitting
    • Decision Trees
    • Deep Learning
    • Deep Reasoning
    • Diffusion Models
    • Ensemble Learning
    • Explainability
    • Feature Selection
    • Fourier Analysis
    • Foundation Models
    • Gaussian Analysis
    • Generative Adversarial Networks
    • Generative AI
    • Gradient Boosting
    • Graphs
    • Histogram of Oriented Gradients
    • Image Processing
    • K-Means Clustering
    • Large Language Models
    • Linear Regression
    • Logistic Regression
    • Long Short-term Memory
    • Markov Chains
    • Model Alignment
    • Model Categories
    • Model Self Improvement
    • Modeling Process
    • Naive Bayes
    • Nearest Neighbors
    • Probabilistic Graphical Models
    • Prompts and Prompting
    • Random Forest
    • Recurrent Neural Networks
    • Regression Analysis
    • Regularization
    • Reinforcement Learning
    • Retrieval Augmented Generation
    • Supervised Learning
    • Support Vector Machines
    • Transformer Neural Networks
    • Unsupervised Learning
    • Word Embedding
  • Organization
    • Organization Overview
    • Agile Processes
    • Application Selection Process
    • Business Model Components
    • Chief AI Officer
    • Coding
    • Functional Groups
    • Governance
    • Implementation
    • Individuals
    • Research
    • Risks
    • Staying Current
  • Probability
    • Probability Overview
    • Central Limit Theorem
    • Cross Entropy Loss
    • Entropy
    • Independent Events
    • Law of Large Numbers
    • Mutually Exclusive Events
    • Normal Distribution
    • Poisson Distribution
    • Probability Density Function
    • Probability Measure
    • P-Value
  • Programming Constructs
    • Programming Constructs Overview
    • Abstraction
    • Array
    • Attribute
    • Best-first Search
    • Binary Search
    • Block
    • Branch
    • Callback
    • Class
    • Conditional
    • Constructor
    • Container/Collection
    • Dynamic Array
    • Dynamic Programming
    • Encapsulation
    • Exception
    • Expression
    • Function
    • Garbage Collection
    • Greedy Algorithms
    • Hash
    • HTTP Request
    • Identifier
    • Inheritance
    • Inner Class
    • Instance
    • Iterator
    • Keyword
    • Lambda
    • Libraries
    • List
    • Linked List
    • Literal
    • Metaclass
    • Method
    • Mixin
    • Object
    • Operator
    • Overloading
    • Overriding
    • Package
    • Parameter
    • Polymorphism
    • Primitive
    • Programming Process
    • Recursion
    • Reflection
    • Regular Expression
    • Reserved Word
    • Return
    • Sort
    • Statement
    • Switch
    • Table
    • This/Self
    • Token
    • Type
    • Variable
  • Statistics
    • Statistics Overview
    • Accuracy
    • A/B Testing
    • Bias
    • Bias-Variance Tradeoff
    • Confidence
    • Correlation
    • Confusion Matrix
    • Deviation
    • Dispersion
    • Estimator
    • Fairness
    • Loss (Cost) Function
    • Mean Squared Error
    • Hypothesis
    • Prediction and Inference
    • Repeatability
    • Standard Deviation
    • Statistical Power of a Test
    • Variance
  • Trigonometry
    • Trigonometry Overview
    • Cosine Similarity
    • Periodic Functions
    • Trigonometric Functions
  • Glossary and Index
  • Mathematical Symbols
  • Applications
  • Search
  • Blog
  • About the Author
  • Contact
  • Menu

The Science of Machine Learning & AI

Mathematics - Data Science - Computer Science
  • Overview
  • Calculus
    • Calculus Overview
    • Activation Functions
    • Differential Calculus
    • Euler's Number
    • Gradients
    • Integral Calculus
    • Logarithms
    • Rectifier Activation Function
    • Sigmoid Activation Function
    • Stochastic Gradient Descent
    • Tanh Activation Function
  • Computing Systems
    • Computing Systems Overview
    • Application Programming Interface
    • Big O Notation
    • Client-Server Architecture
    • Cloud Computing
    • DOM
    • Exponential Growth
    • Graphics Processing Units
    • HTML iframe
    • Hybrid Cloud Computing
    • Internet Protocol Suite
    • Machine Learning & AI Platforms
    • P Versus NP Complexity
    • Quantum Computing
    • Server
    • Software Containers
    • System Scaling
    • Web Crawler
  • Data
    • Data Overview
    • Columnar Databases
    • CSV Data
    • Data Cleaning
    • Data Discovery
    • Data ETL
    • Data Flow
    • Data Lake
    • Data Lakehouse
    • Data Pipeline
    • Data Visualization
    • Data Warehouse
    • Dimensionality Reduction
    • Document Databases
    • Extrapolation
    • Factor Analysis
    • Graph Databases
    • Interpolation
    • JSON
    • Large Data Querying
    • Normalization
    • Outliers
    • Principal Components Analysis
    • Relational Databases
    • Sampling
    • Signal Processing
    • Synthetic Data
    • Vector Databases
  • Linear Algebra
    • Linear Algebra Overview
    • Concatenation
    • Convolution
    • Eigenvalues and Eigenvectors
    • Linear Equations
    • Linear Vector Projection
    • Masking
    • Matrices
    • Pooling
    • Scalars
    • Softmax Function
    • Vectors
  • Models and Modeling
    • Models and Modeling Overview
    • AI Agents
    • Algorithm Libraries
    • Artificial General Intelligence
    • Artificial Narrow Intelligence
    • Artificial Neural Networks
    • Artificial Superintelligence
    • Artificial Universal Intelligence
    • Attention
    • Automated Machine Learning
    • Backpropagation
    • Causal Embedding
    • Classification
    • Cluster Analysis
    • Collaborative Filtering
    • Convolutional Neural Networks
    • Cross Decomposition
    • Curve Fitting
    • Decision Trees
    • Deep Learning
    • Deep Reasoning
    • Diffusion Models
    • Ensemble Learning
    • Explainability
    • Feature Selection
    • Fourier Analysis
    • Foundation Models
    • Gaussian Analysis
    • Generative Adversarial Networks
    • Generative AI
    • Gradient Boosting
    • Graphs
    • Histogram of Oriented Gradients
    • Image Processing
    • K-Means Clustering
    • Large Language Models
    • Linear Regression
    • Logistic Regression
    • Long Short-term Memory
    • Markov Chains
    • Model Alignment
    • Model Categories
    • Model Self Improvement
    • Modeling Process
    • Naive Bayes
    • Nearest Neighbors
    • Probabilistic Graphical Models
    • Prompts and Prompting
    • Random Forest
    • Recurrent Neural Networks
    • Regression Analysis
    • Regularization
    • Reinforcement Learning
    • Retrieval Augmented Generation
    • Supervised Learning
    • Support Vector Machines
    • Transformer Neural Networks
    • Unsupervised Learning
    • Word Embedding
  • Organization
    • Organization Overview
    • Agile Processes
    • Application Selection Process
    • Business Model Components
    • Chief AI Officer
    • Coding
    • Functional Groups
    • Governance
    • Implementation
    • Individuals
    • Research
    • Risks
    • Staying Current
  • Probability
    • Probability Overview
    • Central Limit Theorem
    • Cross Entropy Loss
    • Entropy
    • Independent Events
    • Law of Large Numbers
    • Mutually Exclusive Events
    • Normal Distribution
    • Poisson Distribution
    • Probability Density Function
    • Probability Measure
    • P-Value
  • Programming Constructs
    • Programming Constructs Overview
    • Abstraction
    • Array
    • Attribute
    • Best-first Search
    • Binary Search
    • Block
    • Branch
    • Callback
    • Class
    • Conditional
    • Constructor
    • Container/Collection
    • Dynamic Array
    • Dynamic Programming
    • Encapsulation
    • Exception
    • Expression
    • Function
    • Garbage Collection
    • Greedy Algorithms
    • Hash
    • HTTP Request
    • Identifier
    • Inheritance
    • Inner Class
    • Instance
    • Iterator
    • Keyword
    • Lambda
    • Libraries
    • List
    • Linked List
    • Literal
    • Metaclass
    • Method
    • Mixin
    • Object
    • Operator
    • Overloading
    • Overriding
    • Package
    • Parameter
    • Polymorphism
    • Primitive
    • Programming Process
    • Recursion
    • Reflection
    • Regular Expression
    • Reserved Word
    • Return
    • Sort
    • Statement
    • Switch
    • Table
    • This/Self
    • Token
    • Type
    • Variable
  • Statistics
    • Statistics Overview
    • Accuracy
    • A/B Testing
    • Bias
    • Bias-Variance Tradeoff
    • Confidence
    • Correlation
    • Confusion Matrix
    • Deviation
    • Dispersion
    • Estimator
    • Fairness
    • Loss (Cost) Function
    • Mean Squared Error
    • Hypothesis
    • Prediction and Inference
    • Repeatability
    • Standard Deviation
    • Statistical Power of a Test
    • Variance
  • Trigonometry
    • Trigonometry Overview
    • Cosine Similarity
    • Periodic Functions
    • Trigonometric Functions
  • Glossary and Index
  • Mathematical Symbols
  • Applications
  • Search
  • Blog
  • About the Author
  • Contact

Blog Special: The Accelerating Evolution of Artificial Intelligence

Copyright © 2016-2025 Don Cowan All Rights Reserved

Mathematical Notation Powered by CodeCogs

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Blog RSS

About the Author


AI and the Future of Coding

October 06, 2024

AI is on an exponential growth curve and the evolution of AI is accelerating. This growth includes automated coding capabilities such as OpenAI Codex. The upward trend in automated coding is raising questions like:

  • Is coding a good skill to have?

  • Will coders lose their jobs to AI?

  • Why are companies still using coding tests as a part of their interviewing process?

  • Will automated AI systems eventually take over all coding and associated tasks?

Coding and Related Architecture Work

There’s a hierarchy of coding and associated system/network architecture skills that can be categorized as:

  • Networks: This can include aspects such as messaging, security, telecommunications, and internet protocols.

  • Systems: Computing systems and systems engineering can include aspects such as systems thinking, system scaling, client-server architectures, application programming interfaces, and cloud computing.

  • Data: Data aspects can span across systems or be confined within a system.

  • Methods: Including functions, classes, and groups of statements.

  • Statements: Statements express actions to be carried out. There’s a wide variety programming languages and coding program statement constructs.

Jobs and work that focus on the lower levels of the above hierarchy are at the most risk. AI is getting very good at generating Statements, Methods and Data management processes. Systems engineering and Networks are on the horizon. AI will increasingly perform much of the work of coders and system developers. However, new jobs will emerge and be supported by AI. Humans will focus more on aspects of work that use and compliment what AI can do.

  • Requirements and Specifications: In order for AI systems to produce satisfactory results, they need to be guided by humans. As the sophistication of AI increases, some of this guidance will be generated by other higher level AI models, including AI agents. However, human guidance will remain in the loop.

  • Modeling: The modeling process includes aspects such as: model selection, parameter settings, training, fine-tuning, testing, evaluation, and deployment.

  • Inputs: AI systems require inputs to guide their outputs and performance. This includes aspects such as data, prompts, and parameter adjustments.

  • Results Evaluation and Quality Management: This can include statistical measurements and judgement.

  • Revisions and Selections: AI systems can produce results that are incomplete and/or incorrect, requiring revision by human experts. AI systems can also produce multiple, differing solutions that require human experts to select the best option.

  • Alignment: AI systems need to be aligned with enterprise and human objectives.

Interview Coding Tests

While LLMs can generate code, they don't replicate the problem-solving process, communication skills, and depth of understanding that human engineers bring to the table. Companies use interview coding tests to explore candidate capabilities in a number of areas:

  • Problem Solving Skills: Coding tests assess a candidate's ability to analyze problems, devise solutions, and implement them efficiently. This process demonstrates critical thinking and algorithmic skills that are essential for software engineering roles.

  • Communication and Collaboration: During live coding interviews, candidates are expected to discuss their thought processes, explain their approaches, and collaborate with interviewers. This interaction helps evaluate communication skills and teamwork potential.

  • Code Quality and Optimization: Coding tests allow interviewers to assess a candidate's ability to write clean, efficient, and bug-free code. They can evaluate how well candidates optimize their solutions and handle edge cases.

  • Fundamental Knowledge: These tests help verify a candidate's understanding of core computer science concepts, data structures, and algorithms, which are crucial for building scalable and efficient systems.

  • Real-world Simulation: Coding tests, especially when conducted live, simulate real-world problem solving scenarios that engineers encounter in their daily work.

In Summary

Given all of the above, here are some answers to the questions about the future of coding:

  • Is coding a good skill to have? Yes. Although AI can generate code, human coders are still needed for selecting the best AI generated code, and augmenting/modifying that code.

  • Will coders lose their jobs to AI? Some will. However, those who adapt, leverage AI, and move up to higher levels of code creation should be safe.

  • Why are companies still using coding tests as a part of their interviewing process? Because the knowledge of coding languages and code development capabilities is still important and coding tests help employers assess many aspects of candidates.

  • Will automated AI systems eventually take over all coding and associated tasks? For the foreseeable future, this sees unlikely. However, AI capabilities will continue to improve.

Tags: AI, artificial intelligence, coding
Prev / Next

Blog


Featured Posts

Featured
AI Agents.png
Apr 29, 2025
Developments in AI Agents: Q1 2025 Landscape Analysis
Apr 29, 2025
Apr 29, 2025
AI in 2025.png
Apr 1, 2025
The Technical Evolution of AI in 2025
Apr 1, 2025
Apr 1, 2025
Executive Discussing AI.png
Feb 26, 2025
The Hurdles of AI Implementation: Navigating the Challenges for Enterprises
Feb 26, 2025
Feb 26, 2025
CAIO at work.png
Feb 13, 2025
The Chief AI Officer: Driving Enterprise Value in the Age of Artificial Intelligence
Feb 13, 2025
Feb 13, 2025
Worker with Robot.png
Jan 2, 2025
Thriving in the Age of Superintelligence: A Guide to the Professions of the Future
Jan 2, 2025
Jan 2, 2025
Use of AI in Medicine.jpg
Dec 20, 2024
AI in Medicine: Revolutionizing Healthcare
Dec 20, 2024
Dec 20, 2024
Model Fine Tuning.png
Nov 18, 2024
Recent Work on Large Language Model Fine Tuning
Nov 18, 2024
Nov 18, 2024
AI Spring.png
Nov 7, 2024
The New AI Spring: Why an AI Winter is Unlikely This Time
Nov 7, 2024
Nov 7, 2024
Extending Life Expectancy with AI.png
Oct 26, 2024
How AI Can Help Extend Life Expectancy
Oct 26, 2024
Oct 26, 2024
Living and Working with AI.png
Oct 25, 2024
How AI Will Change the Way We Live and Work
Oct 25, 2024
Oct 25, 2024